EN FR
EN FR


Section: New Results

Image restoration, manipulation and enhancement

Non-Uniform Deblurring for Shaken Images

Participants : Josef Sivic, Andrew Zisserman, Jean Ponce, Oliver Whyte [Microsoft Redmond] .

Photographs taken in low-light conditions are often blurry as a result of camera shake, i.e. a motion of the camera while its shutter is open. Most existing deblurring methods model the observed blurry image as the convolution of a sharp image with a uniform blur kernel. However, we show that blur from camera shake is in general mostly due to the 3D rotation of the camera, resulting in a blur that can be significantly non-uniform across the image. We propose a new parametrized geometric model of the blurring process in terms of the rotational motion of the camera during exposure. This model is able to capture non-uniform blur in an image due to camera shake using a single global descriptor, and can be substituted into existing deblurring algorithms with only small modifications. To demonstrate its effectiveness, we apply this model to two deblurring problems; first, the case where a single blurry image is available, for which we examine both an approximate marginalization approach and a maximum a posteriori approach, and second, the case where a sharp but noisy image of the scene is available in addition to the blurry image. We show that our approach makes it possible to model and remove a wider class of blurs than previous approaches, including uniform blur as a special case, and demonstrate its effectiveness with experiments on synthetic and real images.

This work has been published in [8] . An image deblurring demo, described in section  5.8 , has been made available online.

Learning to Estimate and Remove Non-uniform Image Blur

Participants : Florent Couzinie-Devy, Jian Sun, Karteek Alahari, Jean Ponce.

This work addresses the problem of restoring images subjected to unknown and spatially varying blur caused by defocus or linear (say, horizontal) motion. The estimation of the global (non-uniform) image blur is cast as a multi-label energy minimization problem. The energy is the sum of unary terms corresponding to learned local blur estimators, and binary ones corresponding to blur smoothness. Its global minimum is found using Ishikawa's method by exploiting the natural order of discretized blur values for linear motions and defocus. Once the blur has been estimated, the image is restored using a robust (non-uniform) deblurring algorithm based on sparse regularization with global image statistics. The proposed algorithm outputs both a segmentation of the image into uniform-blur layers and an estimate of the corresponding sharp image. We present qualitative results on real images, and use synthetic data to quantitatively compare our approach to the publicly available implementation of Chakrabarti et al. 2010.

This work has been submitted to CVPR 2013.